Journal of Interconnection Networks, Vol. 2, No. 3 (2001) 365-378
© World Scientific Publishing Company

LOCAL-SAFETY-INFORMATION-BASED BROADCASTING
IN HYPERCUBE MULTICOMPUTERS WITH
NODE AND LINK FAULTS

DONG XIANG and AI CHEN
Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R. China
E-mail: zd@dns.ime.tsinghua.edu.cn
JIE WU

Dept. of Computer Sci. and Eng., Florida Atlantic University, Boca Raton, FL33431, USA
E-mail: jie@cse.fau.edu

Received 10 August 2000
Revised 1 March 2001

This paper presents a method to cope with fault-tolerant broadcasting in hypercube mul-
ticomputers with both node and link faults. The local safety concept is extended to faulty
hypercubes with both node and link faults. The local-safety-based algorithm is used in
a fully unsafe hypercube, where there is no safe node. A fully unsafe hypercube can be
split into a set of maximal safe subcubes. We show that if these maximal safe subcubes
meet certain requirements given in the paper, broadcasting can still be carried out suc-
cessfully and in some case optimal broadcast is still possible. The method is extended
to fault-tolerant routing and multicasting when the system contains both node and link
faults.
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1. Introduction

The desire for obtaining more powerful computers leads us to build multicomputers.
Performance of a multicomputer system highly depends on the communication cost
and the balance of computation. The hypercube architecture can handle a reason-
able amount of message traffic, and also provide some degree of fault-tolerance. A
couple of commercial or research hypercube systems have been constructed in the
past two decades [1,11,17,18]. Especially, the recent SGI Origin 2000 employs hyper-
cube architecture. When some nodes or links fail, communication between fault-free
nodes should still continue. Fault-tolerant communication [2-5,7,10,12-15,19-25] has
been studied extensively. The hypercube interconnection network is quite suitable
for multicomputer and distributed shared memory systems according to Duato’s
experimental study [6)].
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Efficient broadcasting of data is one of the keys to the performance of a mul-
ticomputer. Broadcasting is the process of transmitting data from a node called
the source to all other nodes once and only once. Data broadcasting in fault-free
networks has been studied intensively in [1,8,9]. One-to-all fault-tolerant broadcast-
ing passes a message from a source to all fault-free nodes in a faulty hypercube in
the literature [2,7,13-15,19]. Park and Bose [12] presented an all-to-all broadcast
algorithm for hypercube with up to n/2 link failures in a binary n—cube.

A couple of limited-global-fault-information-based methods were introduced to
deal with fault-tolerant communication in hypercubes [4,5,10,19-25]. Lee and Hayes
[10] proposed the concept of the safe node for the first time. Routing is to avoid
unsafe nodes which could possibly lead to communication difficulties assume the
hypercube is not fully unsafe. Lee and Hayes [10] also proposed a fault-tolerant
broadcast algorithm based on the safe node concept. Priority order is determined
based on status of neighbors of the node under process to send the broadcast label
and the message in order to avoid communication difficulties. Wu and Fernandez
[21], Chiu and Wu [5] refined the safe node concept. A fault-tolerant broadcast
algorithm was presented based on the refined safe node concept in [21]. Just like
[10], a message can be broadcast reliably only if the binary n—cube is safe although
reliable message passing is still possible in a fully unsafe hypercube in many cases.
Unsafe nodes were classified based on degree of safety status to facilitate the design
of an efficient routing algorithm in [5]. A feasible path of length no more than the
Hamming distance between the source and destination plus four can be established
as long as the hypercube is not fully unsafe. A mechanism called the safety level was
proposed to assist an efficient fault-tolerant broadcast in Wu [19]. Priority order to
forward the broadcast data is determined by the safety level numbers.

However, safety level [19], safety vector [20], and routing capability [4] consider
safety inside the k—distance neighborhood. It is found that a lot of further resilience
of hypercube topology still have not been utilized by the above methods. Local safety
[22-25] considers safety inside the minimum subcube that contains the source and
destination. Local safety is proposed to cope with fault-tolerant broadcasting for
hypercube multicomputers. A fully unsafe hypercube can be split into a unique set
of maximal safe subcubes. Message-passing inside a maximal safe subcube can be
completed reliably. An algorithm is proposed to calculate local safety information
using which the required extra cost is only comparable to that to derive the global
safety information. Local safety is utilized in the fault-tolerant broadcast algorithm
by only considering safety of the broadcast subcube (which indicates the range of
nodes the message should be sent).

Notation and definitions are introduced in Section 2. Local safety is proposed to
assist fault-tolerant communication in Section 3. A fault-tolerant broadcast algo-
rithm is presented according to the local safety information in Section 4. The local-
safety-based broadcast algorithm is successfully extended to fault-tolerant routing
and multicasting when the system contains both node and link faults in Section 5.
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2. Preliminaries

An n—dimensional hypercube has 2™ nodes (or processors). Each node v can be
represented by a sequence of n binary bits (vpvp—1...v1), where v; € {0,1}. A
subcube SC of a hypercube can be represented by a sequence of n bits cpcp—1 - - - €21,
where ¢; € {0, 1, %}, and “*” indicates don’t care (can be assigned both 0 and 1). Two
nodes are connected by a bidirectional link if and only if the binary representations
of the two nodes differ in exactly one bit. The Hamming distance H(z,y) between
two nodes z and y is the number of bits in which the labels of = and y differ.
The spanning subcube SC(z,y) between two nodes z and y represents the smallest
subcube that contains z and y. We only consider message-passing between fault-free
nodes. A path is feasible if there is no faulty node in the path. A path is called
a minimum path if length of the path is equal to the Hamming distance from the
source to the destination. The node s (1 < i < n) represents the neighbor of s
along dimension 7 in the hypercube.

A fault-free node in an n—dimensional hypercube is defined as unsafe [4,21] if it
has at least two faulty neighbors, or three or more unsafe or faulty neighbors. A
faulty hypercube is called fully unsafe if it contains no safe node; otherwise, it is a
safe cube. An unsafe node is ordinarily unsafe if it has at least one safe neighbor,
otherwise, it is strongly unsafe.

In the 4—cube given in Fig. 1, 0000 is safe, 0001 is ordinarily unsafe, and 1011 is
strongly unsafe. Incomplete spanning binomial tree is utilized to implement broad-
casting. An incomplete spanning binomial tree in an n—dimensional faulty hyper-
cube is a connected subgraph of an n—level spanning binomial tree with the same
root node that connects all fault-free nodes in the n—cube, whose root is called an
[—node. Usually, the [—node set contains the safe node set. Fig. 1 presents broad-
casting with the source 0100, which is a safe node. The incomplete binomial tree
is presented in Fig. 1. Each fault-free node has a broadcast label, which shows the
range that the message from the node should be distributed. K

Definition 1 The broadcast subcube of a node is defined based on the received broad-
cast label by replacing the bits of the node’s address with don’t care, where the received
broadcast label of that node are assigned value 1.

Let node 10100 in a 5—dimensional hypercube receive a broadcast label [11010].
The broadcast subcube of node 10100 is **1*0. Let the node 01011 receive a broad-
cast label [11010], the broadcast subcube of 01011 is **0*1. The broadcast subcube
of the source of the broadcast message is the binary n—cube.

It is quite possible for an n—cube to beé fully unsafe when it contains n or more
than n faulty nodes [5]. Fault-tolerant communication inside a fully unsafe n—cube
is impossible according to the safe node concept [5,10,21]. We are interested in
reliable fault-tolerant broadcasting inside a fully unsafe hypercube.

Definition 2 A node in an n—cube is locally unsafe inside a subcube if it has at
least two faulty neighbors, or at least three locally unsafe or faulty neighbors inside
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Figure 1: Binomial-tree-based broadcasting via limited-global safety.

the subcube; otherwise, it is locally safe in the subcube. The subcube is fully unsafe if
1t contains no locally safe node; otherwise, it is a safe subcube. Locally unsafe nodes
inside a subcube SC is further classified: a locally unsafe node is locally ordinarily
unsafe if it has at least one locally safe neighbor in SC; otherwise, it is a locally
strongly unsafe node.

The following schemes like those in [5] are adopted to identify local safety infor-
mation of a hypercube multicomputer system with both node and link faults:

e The end nodes of a faulty link inside the subcube are thought of as faulty
nodes;

. o the end nodes of a faulty link inside the subcube are considered as unsafe after
safety information of the hypercube system has been determined.

" A subcube can still be safe even though all nodes outside of it are faulty. Fig. 2
presents a fully unsafe 5—cube with 4 faulty nodes and 4 faulty links. The 5—cube
is actually a fully unsafe cube, but node 00000 is locally safe in subcubes 0**** and
**%0*, and it is locally ordinarily unsafe in *0*** and ****0. One node may have
different local safety parameters in different subcubes. A definition for a maximal
safe subcube is presented as follows.

Definition 3 An m—dimensional subcube is defined as a mazimal safe subcube if
it is safe, and any k—dimensional (k > m + 1) subcube contains it is fully unsafe.

In the rest of this section, a couple of properties of faulty hypercubes based local
safety are presented. Proofs of them are similar to those in [22-25].

Property 1 If a node is locally unsafe in a k—dimensional subcube SC, it is still
locally unsafe in an m—dimensional (m > k) subcube SC, if SCy contains SC.

Property 2 Suppose a node s is locally ssze in an m—dimensional subcube SCy, it
is still locally safe in a k—dimensional subcube SCy (k < m) if SCs contains SC;.
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Figure 2: Local safety for fault-tolerant broadcasting.

Property 3 Let = be locally strongly unsafe in a subcube SC, there exists at least
one locally ordinarily unsafe neighbor of x in SC if the subcube SC is safe.

The following property shows an important feature of a safe n—cube or subcube.

Property 4 A k—dimensional (k < n) subcube is safe if and only if the n—cube
contains a fault-free k — 2 subcube, each node of which has at most one neighboring
faulty node or end node of a faulty link.

Property 5 There always ezxists a minimum feasible path between two fault-free
nodes = and y if the spanning subcube SC(x,y) is safe even though the hypercube is
fully unsafe.

Property 6 A minimum feasible path between the source s and destination d is
available using local safety of the mazimal safe subcube msc that contains the span-
ning subcube SC(s,d) if one of s and d is locally safe in msc even though the
hypercube is fully unsafe. '

There may still exist a feasible path of length no more than H(s,d) + 4 even
if the spanning subcube is fully unsafe, which can be illustrated as the following
properties.

Property 7 A feasible path of length no more than H(s,d) + 2 between the source
s and destination d is available using local safety of the mazimal safe subcube msc
containing the spanning subcube SC(s,d) if one of s and d is locally ordinarily unsafe
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(none of s and d is locally safe) inside msc even though the hypercube and SC(s,d)
are fully unsafe.

Property 8 A feasible path of length no more than H(s,d)+4 between the source s
and destination d using local safety of the mazimal safe subcube containing the span-
ning subcube SC(s,d) if both of s and d are locally strongly unsafe in the mazimal
safe subcube even if the hypercube and SC(s,d) are fully unsafe.

3. Local Safety Information

We use the following scheme to obtain local safety for all nodes concurrently if the
n—cube is fully unsafe. For each node v (binary representation is vpvp_1 - .- v2v1),
check local safety of the node in vy, ...k, *Up_1%...%%, ..., k%.. %k Vg%, ¥**... %V
concurrently. If the node has at least two faulty neighbors (end nodes of a link fault
inside the subcube should be thought of as faulty when calculating local safety
information, which are considered as unsafe after local safety information has been
obtained) or at least three locally unsafe or faulty neighbors inside a subcube, then
the node is locally unsafe in the subcube. The node stores the local safety of its
neighbors and itself if the subcube has been found to be safe. When we find at
least two (n — 1)—dimensional subcubes that contains the node are unsafe, local
safety of all 2(n — 1) (n — 2)—dimensional subcubes that contains the node should
be checked. The above process should be continued until local safety of all maximal
safe subcubes with sizes greater than the given limit has been got.

Algorithm local-safety()
for each fault-free node v; in the n—cube,
parallel do
local-safety-information(v; )
parallel end
Procedure local-safety-information(v)

1. Let the binary expression of v be v,vp,—1 .. . v2v1, place subcubes v, *. . . %%, %V, 3 ...%
%, ..., and % % ... % v; into the current subcube set.

2. Concurrently check the state of v inside each subcube SC in the current subcube set
by steps 3 and 4.

3. Set all fault-free nodes in SC as locally safe.

4. While the state v in SC is unstable, do

let SC contain dimensions 41,12,...,i € {0,1,...,n} (k > 3), set state of v in SC as
locally unsafe if at least two of v's neighbors along dimensions 41, is,- - - , 75 are faulty
or at least three of the neighbors are locally unsafe or faulty.

5. If v is locally unsafe in SC, and v has at least one locally safe neighbor in SC, set
state of v in SC as locally ordinarily unsafe; otherwise, set state of v in SC as locally
strongly unsafe.

6. For every unsafe subcube SC; containing v with size no less than a given limit,
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(a) get the (k — 1)—dimensional subcubes SC5 of SCy;
(b) if the size of SC, is greater than the given limit, put SC» into the current
subcube set.
7. If there exists at least one subcube in the current subcube set, go to step 2.

In step 4, “unstable” indicates the states of the node in the last two consecutive
steps are different. The overall communication steps to obtain local safety is O(p-m),
where p is usually only 2 or 3, or a little greater in most cases, and m is the maximal
number of steps to get local safety each round which is similar to that to derive
the global safety information like [5,21]. The computing complexity for each node
between two communication steps should be O(n - K), where n is the number of
dimensions of the hypercube and K is the maximum number of subcubes checked in
one step. This is only the worst case. The actual computing steps for each fault-free
node between two communication steps while calculating local safety information
should be less in most cases. The above algorithm also works well for nodes in a
disconnected cube. Broadcast according to local safety can handle cases when the
system contains more faults because other metrics consider safety corresponding
to the whole system or the k—distance neighborhood. Local safety in this paper
considers safety inside the broadcast subcube.

The amount of local safety information that each node needs to keep is not so
much. Consider a fault-free node v in a 10—cube. Let v keep local safety information
of all maximal safe subcubes of size no less than 6 that contain v. There are at
most 210 6—dimensional subcubes that contain the node v. Usually, the number of
maximal safe subcubes with sizes less than 6 that contain » is much less than 210.
Local safety information of a fault-free node and its fault-free neighbors should be
kept by each fault-free node. The node v needs to keep local safety information of
at most 2310 subcubes, which is acceptable. A node in a current multicomputer

~can have several Mbytes of local memory. The main cost to calculate local safety
information is the time to communicate local safety information to its fault-free
neighbors each step, which is mainly determined by the set-up time. The time for
a node to calculate local safety information each step should be trivial because it
is easy for a current multicomputer to have hundreds of MHZ processor inside each
node. Therefore, we can say that the cost to get Iocal safety information should
be 2 or 3 times (or a little more) of that to calculate the global safety information
[5,21].

It is clear that there exists a unique set of maximal safe subcubes for a faulty
hypercube. It is unnecessary to find all maximal safe subcubes. We present a
threshold in the above algorithm to limit the size of the maximal safe subcubes
utilized. Usually, 2 or 3 rounds is enough. The faulty hypercube as shown in Fig. 2
contains 4 faulty nodes and 4 faulty links. There are 8 4—dimensional maximal
safe subcubes in the fully unsafe 5—cube as shown in Fig. 2. The 8 maximal safe
subcubes are O****, *1***, *0***’ **1**, **O**’ ***1*, ***0*, a.nd ****O’ which are
labelled as maximal safe subcubes from 1 to 8, respectively. Fig. 2 also indicates the
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maximal safe subcubes that contain the fault-free nodes. For example, node 00000
has a label {1, 3,5,7,8}, which represents the maximal safe subcubes Q**¥*, *(Q***
FXO*¥, ¥*¥X0*, and ****0 contain node 00000. Each node s keeps local safety of the
node and its neighbors, which can be stored in (n + 1) lists as follows. The last list
records local safety information of the node, and the first n lists record local safet
y of its neighbors. Each element a(b) of the i—th list indicates local safety of s(®)
inside the b—th maximal safe subcube is a, where a can be assigned 5, 3, 2, and 0
which indicates locally safe, locally ordinarily unsafe, and locally strongly unsafe,
and faulty, respectively. Let s be node 00001. It needs to keep the following lists:

s((00000) : 5(1),3(3), 5(5), 5(7), 3(8)

52 (00011) : 3(1),3(3), 3(5), 3(6)

5(3)(00101) : 3(1),3(3), 3(4), 3(7)

s (01001) : 3(1),5(2),5(5),5(7)

5)(10001) : 1(3), 3(5), 5(7)

s :5(1),3(3),5(5),5(7)

4. Fault-Tolerant Broadcasting via Local Safety Information

Assume each fault-free node keeps the local safety of itself and its fault-free
neighbors. We show optimal broadcasting is still possible in many cases even though
the hypercube is fully unsafe. The sufficient condition for the existence of an optimal
broadcasting, a fault-tolerant broadcast algorithm are presented for a fully unsafe
hypercube. A case study is also presented according to the algorithm.

4.1. Broadcast Algorithm

A message can always be passed optimally from a node s if s is locally safe in
its broadcast subcube, which implies that a message can be broadcast optimally
even though the n—cube is fully unsafe [23]. We would like to construct a couple
of broadcast subcubes starting from the source. Consider the source has at most
one faulty neighbor in the n—cube. Let Qp—1, Qn-2, Qn—3, - - -, @n—m be broadcast
subcubes of the fault-free neighbors s(1), s(2) s(im) (n —1 < m < n) of the
source, where 1,42, ..., iy € {1,2,...,n} and the subscripts indicate the sizes of the
corresponding broadcast subcubes. The following techniques are utilized to guide
fault-tolerant broadcasting,.

e Try to avoid sending the message and the broadcast label to fault-free neigh-
bors which has at least two faulty neighbors inside the broadcast subcube or
is connected with a faulty link in the broadcast subcube;

e consider the source has one connected faulty link or at least two faulty neigh-
bors inside the broadcast subcube, send the broadcast label to the last fault-
free neighbor along dimension 7 inside the broadcast subcube without resetting
the i—th bit.
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. The node receives the unmodified label do not send the message back to its prede-
cessor. Algorithm broadcast() broadcasts a message using local safety information.
The algorithm sets all bits of the broadcast source’s label to 1. When the n—cube is
fully unsafe, broadcast() tries to find a fault-free neighbor s® of s along dimension
1, whose broadcast subcube is contained in a maximal safe subcube. The message
can be broadcast reliably if the broadcast subcube is contained in a maximal safe
subcube. Assume size(k) is the size of the maximal safe subcube k that contains
the node v, in which the local safety of the node is safety(v,k) (5 for locally safe,
3 for locally ordinarily unsafe, 2 for locally strongly unsafe, and 0 for faulty), the
safety summation measure is calculated using the following expression,

safe(v) = size(k) - safety(v, k)
Algorithm broadcast() /* Let s be the broadcast source */
1. If the node s is the broadcast source, for : =1 to n, label[i] + 1; do 2, 3, 4;

2. If the broadcast subcube of s is contained in a maximal safe subcube msc,
then broadcast the message inside msc based on the local safety information
of msc just like that in [21] and send the message and broadcast label without
resetting the corresponding bit for fault-free neighbor of the source when the
source has at least two faulty neighbors; otherwise fp + 0; if s has at least
two faulty neighbors in its broadcast subcube, then 5; otherwise 3, 4.

3. While f,, =0, do

(@) foir+1,fori=1ton
i. if label[i] = 1 and the broadcast subcube of s() is contained in a
maximal safe subcube, in which s is locally safe, then (ii)
ii. label[i] < 0; send the message and label to s®; fi,. « 0.
(b) fori=1ton
i. if label[i] = 1 and the broadcast subcube of s is contained in a

maximal safe subcube, and s() has at most one faulty neighbor and
no neighboring faulty link inside the broadcast subcube, then (ii),

ii. label[i] + 0, send the message and the label to s®; f, + 0.
(c) fori=1ton
i. if label[i] = 1 and the broadcast subcube of s(*) is contained in a
maximal safe subcube, then (ii),
~ ii. label[i] + 0, send the message and label to s®; fy + 0.

4. If there still exists a fault-free neighbor of s, which has not received the message
and broadcast label, for each label[i] =1 (1 < i < n)
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(a) if s is fault-free and has the most safety summation measure, then (b);
(b) label[i] + 0; send the message, label to s via dimension 3.

5. Do the same process as steps 3,4, each time only check whether the node s(
is the last unprocessed fault-free neighbor of s, if it is not, send the message
and label by resetting label[i]; if s is the last unprocessed fault-free neighbor
of s, send the message and label to s® without resetting label[i].

In step 2, there exists at least one fault-free node cannot get the broadcast mes-
sage using the previous label sending scheme [9,10,19,21]. The technique to send the
broadcast label without resetting the corresponding bit can make the unreachable
nodes reachable. A flag fi, is adopted to guide whether the broadcast should be
continued or not, which is set as 0 initially. Let us show how to generate the broad-
cast subcube of s in step 3. For example, the node 10101(v) has a broadcast label
[11011], the broadcast subcube of 00101 (v(®)) should be 0*1**, while the broadcast
subcube of 10100 (v(1) is **1*0.

The algorithm broadcast() can optimally broadcast the message of a node s inside
its broadcast subcube BSC if s is locally safe in a maximal safe subcube which
contains BSC. The sufficient condition for optimal broadcasting inside a fully unsafe
n—cube can be stated as follows: the algorithm broadcast() can optimally broadcast
the message of the source s in n steps if s has at most one faulty neighbor and
no neighboring faulty link and a sequence of fault-free neighbors s(), s(2) .
slim) (n—1 < m < n) are locally safe in a sequence of maximal safe subcubes which
contain the broadcast subcubes of the nodes s(i1), s(i2) . s(im)  regpectively, where
1,92, ...,%m € {1,2,...,n}. It should be noted that a time-optimal broadcasting is
always impossible if the source is an end node of a faulty link.

4.2. A Case Study

Let node 10000 in the same faulty 5—cube as shown in Fig. 2 be the broadcast
source. Node 00000 is locally safe in the maximal safe subcube 0**** therefore,
the broadcast message with a broadcast label [01111] is forwarded to 00000. An
optimal broadcast is available inside 0**** at node 00000. The broadcast message
with a label [01011] is sent to 10100 (it can also be passed to 11000 with a broadcast
label [00011] at this point) because 10100 is locally safe in the maximal safe subcube
**1**. The broadcast message at node 10100 can be broadcast optimally in 1*¥1**
using local safety information of the maximal safe subcube **1**. The broadcast
message is then sent to 11000 with a broadcast label [00011] because 11000 is locally
safe inside the maximal safe subcube **0** that contains the broadcast subcube
110**. Therefore, the broadcast message of 11000 can be broadcast optimally inside
the broadcast subcube 110**. Finally, the broadcast message can be broadcast
optimally inside 100** because 10000 is locally safe in *0***. Fig. 3 presents the
time-optimal broadcast of the broadcast message and broadcast labels of the fault-
free nodes.
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Figure 3: Optimal fault-tolerant broadcasting with local safety.

5. Extensions to Fault-Tolerant Routing and Multicasting

The extensions to fault-tolerant routing and multicasting when the system con-
tains both node and link faults are introduced in this section. The faulty 4—cube
given in Fig. 4 contains 4 faulty nodes 0011, 1100, 1110, 1001, and two link failures
000— and 01 — 0 (000— indicates the link connecting nodes 0000 and 0001). End
nodes of a faulty link are thought of as faulty when local safety information of the
subcube that contain the faulty link is checked. Certainly, the 4—cube is fully un-
safe. There exist the following maximal safe subcubes in the fully unsafe 4—cube
given in Fig. 4: 1¥x* ke okkpk okl *%%1 and 0%*0*. A message should never
be routed to a node whose shortest paths leading to the destination are blocked
by faulty links when H(s,d) = 2, where s and d are the source and destination,
respectively.

The message can be routed to a locally safe node v in the maximal safe subcube
msc if the source s is locally safe in msc and H(s,d) > 3 (d is the destination).
The message should be routed to a fault-free neighbor whose link leading to the
destination d is not blocked by a link failure in a minimum path from the source s
to d if H(s,d) = 2. In order to implement the above scheme, each node keeps fault
information (including faulty node and link failure) of its fault-free deighbors.

If the source s is locally ordinarily unsafe in the maximal safe subcube msc, send
the message to a locally safe neighbor v in a minimum feasible path from s to d if
possible. Otherwise, send the message to a locally ordinarily unsafe neighbor of s
in a minimum feasible path from s to d if possible. Otherwise, send the message to
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(b) fault-tolerant routing

—>— * link failure  © : faulty node @ : source [ : multicast destination

Figure 4: Local-safety-information-based fault-tolerant communication in hyper-
cubes with node and link failures.

a locally safe neighbor in a non-minimum feasible path from s to d (which is always
available) when the above two cases are not met.

If the source s is locally strongly unsafe in msc, send the message to a locally
ordinarily unsafe neighbor in a minimum feasible path from s to d if possible. Oth-
erwise, send the message to a locally strongly unsafe neighbor of s along a minimum
feasible path from s to d if possible. Select a locally ordinarily unsafe neighbor of s
in a non-minimum feasible path from s to d when both cases as stated are not met.

Consider a message is routed from 1011 to 0100 in the faulty 4—cube as presented
in Fig. 4(b). The next node 1011 can be selected in a minimum path from 1011 to
0100, which is contained in a maximal safe subcube with the destination 0100. Let
1111 be selected as the next node, which is locally safe in the maximal safe subcube
*%*0 that contains both 0100 and 1111. Node 1111 routes the message to a locally
safe neighbor 0111 in a minimum path from 1111 to 0100. Node 0111 cannot route
the message to 0110 which is connected with the destination 0100 by a faulty link.
Node 0010 should route the message to 0101 in this case. The selected feasible path
from 1011 to 0100 is presented in Fig. 4(b).

Fault-tolerant multicasting is also similar when the system contains both node
and link faults. Our method just handle fault-tolerant routing between each pair
of source and destination as stated above while makes all destinations share links
as many as possible in order to minimize traffic. The detailed fault-tolerant mul-
ticasting algorithm is similar to that in [24]. Consider a multicast problem with a
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source 0111 and a destination set {0000,0010,1000,1101,1011}. As for the desti-
nation 0010, 0110 is the only next node from the source, which is connected with
destination 0010 via a fault-free link. The best next node of the destination 0000
is 0101, which is locally safe in a maximal safe subcube 0*0* that contains both
0101 and 0000. Certainly, the next node of the destination 0000 can also be 0110,
but 0110 is locally ordinarily unsafe in the maximal safe subcube ***0 that contains
both 0110 and 0000. The next node for destinations 1000, 1010 and 1011 is 1111
because 1111 is locally safe in the maximal safe subcube 1***. The whole multicast
tree of the multicast problem can be found from Fig. 4(a).

6. Conclusions

Local safety information was extended to handle fault-tolerant broadcasting in
hypercube multicomputers with node and link faults. Some further resilience of
the hypercube topology was utilized by the broadcast algorithm compared with the
previous methods. An algorithm was presented to calculate local safety informa-
tion of a faulty hypercube. We also found that the extra cost to calculate local
safety information is comparable to that to get the global safety information. Local
safety information was well utilized in the fault-tolerant broadcast algorithm by only
considering safety of the broadcast subcube. The sufficient condition for optimal
broadcast of a message in a fully unsafe hypercube was also presented. The proposed
broadcast algorithm can still work well even though the system contains more faults
than previous methods. Fault-tolerant routing and multicasting schemes based on
node and link faults were also introduced.
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